994 research outputs found

    Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides

    Full text link
    Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor to metal (S-M) transition at a critical pressure. S-M transition is attributed to lifting the degeneracy of the bands at fermi level caused by inter-layer interactions via charge transfer from metal to chalcogens. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy, opens-up possibility for its usage in a range of applications.Comment: Accepted in Phys. Rev.

    Quantum Kerr tunneling vacua on a (DDˉ)4(D{\bar D})_4-brane: An emergent Kerr black hole in five dimensions

    Get PDF
    We revisit a non-perturbative space-time curvature theory, underlying a two form U(1) gauge dynamics, on a D4-brane. In particular, two different gauge choices for a two form are explored underlying the dynamics of a geometric torsion in a second order formalism. We obtain two non-extremal quantum Kerr geometries in five dimensions on a pair of (DDˉ)4(D{\bar D})_4-brane in a type IIA superstring theory. The quantum vacua are described by a vanishing torsion in a gauge choice, underlying a geometric realization, on a non-BPS brane. It is argued that the quantum Kerr vacua undergo tunneling and lead to a five dimensional Kerr black hole in Einstein vacuum. A low energy limit in the quantum Kerr vacua further re-assures an emergent Kerr black hole.Comment: 21 pages, 8 figure

    Emergent Schwarzschild and Reissner-Nordstrom black holes in 4D: An effective curvature sourced by a B2-field on a D4-brane

    Full text link
    We obtain a Schwarzschild and a Reissner-Nordstrom emergent black holes, by exploring the torsion dynamics in a generalized curvature formulation, underlying an effective D4-brane on S1. It is shown that a constant effective metric, sourced by a background fluctuation in B2-potential, on a D3-brane receives a dynamical quantum correction in presence of an electric charge.Comment: 7-pages, minor corrections, references added, to appear in Physical Review

    Quintessence and effective AdS brane geometries

    Full text link
    A geometric torsion dynamics leading to an effective curvature in a second order formalism on a D4-brane is revisited with a renewed interest. We obtain two effective AdS4AdS_4 brane geometries on a vacuum created pair of (DDˉ)3(D{\bar D})_3-brane. One of them is shown to describe an AdS Schwarzschild spinning black hole and the other is shown to describe a spinning black hole bound state. It is argued that a D-instanton in a vacuum created anti D3-brane within a pair may describe a quintessence. It may seen to incorporate a varying vacuum energy density in a brane universe. We consider the effective curvature scalar on S1×S1S^1\times S^1 to analyze torsion-less geometries on a vacuum created pair of (DDˉ)2(D{\bar D})_2-brane. The emergent AdS3AdS_3 brane is shown to describe a Schwarzschild and a Reissner-Nordstrom (RN) geometries in presence of extra dimension(s).Comment: 20 pages, expanded discussion and added referenc

    Emergent gravity/Non-linear U(1) gauge theory correspondence

    Full text link
    Kaluza-Klein gravity is revisted, with renewed interest, in a type IIB string theory on S1×K3S^1\times K3. The irreducible curvature tensors are worked out in the, T-dual, emergent gravity in 4D to yield a non-linear U(1) gauge theory. Interestingly, the T-duality may be seen to describe an open/closed string duality at a self-dual string coupling. The obtained deformation in AdS5AdS_5 black hole is analyzed to introduce the notion of temperature in the emergent gravity underlying the recent idea of entropic force.Comment: 6 page

    Pressure-Induced Topological Phase Transitions in CdGeSb2_2 and CdSnSb2_2

    Full text link
    Topological quantum phase transitions (TQPTs) in a material induced by external perturbations are often characterized by band touching points in the Brillouin zone. The low-energy excitations near the degenerate band touching points host different types of fermions while preserving the topological protection of surface states. An interplay of different tunable topological phases offers an insight into the evolution of the topological character. In this paper, we study the occurrence of TQPTs as a function of hydrostatic pressure in CdGeSb2_2 and CdSnSb2_2 chalcopyrites, using the first-principles calculations. At ambient pressure, both materials are topological insulators having a finite band gap with inverted order of Sb-ss and Sb-pxp_x,pyp_y orbitals of valence bands at the Γ\Gamma point. On the application of hydrostatic pressure the band gap reduces, and at the critical point of the phase transition, these materials turn into Dirac semimetals. On further increasing the pressure beyond the critical point, the band inversion is reverted making them trivial insulators. The pressure-induced change in band topology from non-trivial to trivial phase is also captured by L\"{u}ttinger model Hamiltonian calculations. Our model demonstrates the critical role played by a pressure-induced anisotropy in frontier bands in driving the phase transitions. These theoretical findings of peculiar coexistence of multiple topological phases in the same material provide a realistic and promising platform for the experimental realization of the TQPT.Comment: 7 pages, 7 figure

    Strain-induced electronic phase transition and strong enhancement of thermopower of TiS2

    Full text link
    Using first principles density functional theory calculations, we show a semimetal to semiconducting electronic phase transition for bulk TiS 2 by applying uniform biaxial tensile strain. This electronic phase transition is triggered by charge transfer from Ti to S, which eventually reduces the overlap between Ti-(d) and S-(p) orbitals. The electronic transport calculations show a large anisotropy in electrical conductivity and thermopower, which is due to the difference in the effective masses along the in-plane and out of plane directions. Strain induced opening of band gap together with changes in dispersion of bands lead to three-fold enhancement in thermopower for both p- and n-type TiS2 . We further demonstrate that the uniform tensile strain, which enhances the thermoelectric performance, can be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at Ti sites.Comment: 8 pages, 6 figure
    corecore